$$
\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}
$$

the presence of the aromatic ring. It is noteworthy that this paper reports the first type B photochemical conversion observed in solution for substituted tetrahydronaphthoquinols.

To summarize, reactions in solution, where molecular conformational equilibrium is facile, are governed chiefly by kinetics, whereas the solid-state reactions are topochemically controlled. The lowestenergy conformation (in which it is most likely to crystallize) is one which predisposes the molecules to a specific reaction in the solid state.

We thank Professor J. R. Scheffer and Mr S. H. Askari for their collaborative studies on the solid-state photochemistry, the Natural Sciences and Engineering Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.

References

Appel, W. K., Greenhough, T. J., Scheffer, J. R., Trotter, J. \& Walsh, L. (1980). J. Am. Chem. Soc. 102, 1158-1161.
Appel, W. K., Jiang, Z. Q., Scheffer, J. R. \& Walsh, L. (1983). J. Am. Chem. Soc. 105, 5354-5363.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Greenhough, T. J. \& Trotter, J. (1980). Acta Cryst. B36, 1831-1835.
Jiang, Z. Q., Scheffer, J. R., Secco, A. S. \& Trotter, J. (1981). Tetrahedron Lett. 22, 891-894.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). Multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Secco, A. S. \& Trotter, J. (1982a). Acta Cryst. B38, 2190-2196.
Secco, A. S. \& Trotter, J. (1982b). Acta Cryst. B38, 1233-1237.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1987). C43, 962-964

Structure of Tetramethylammonium Dihydrogenorthophosphate Monohydrate

By Nobuhiko Ohama and Mitsuo Machida
Department of Physics, Kyushu University 33, Fukuoka 812, Japan

and Terumasa Nakamura and Yasumasa Kunifuji
School of Nursing and Medical Technology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807, Japan

(Received 29 August 1986; accepted 11 December 1986)

Abstract

N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=189.15\), monoclinic, $P 2_{1} / c, \quad a=8.518(1), \quad b=12.897$ (2), $\quad c=$ 8.440 (2) $\AA, \quad \beta=99.05(1)^{\circ}, \quad V=915.6 \AA^{3}, \quad Z=4$, $D_{m}=1.36(1), \quad D_{x}=1.372 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.2745 \mathrm{~mm}^{-1}, F(000)=408$, $T=296$ (1) K , final $R=0.037$ for 2023 unique reflections. PO_{4} tetrahedra are connected to each other along the c axis by H bonds $[\mathrm{O} \cdots \mathrm{O} \quad 2.543(2)$ and $2.606(2) \AA, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{O} \quad 171.1$ (8) and $175.6(8)^{\circ} \mathrm{J}$; other H bonds $[\mathrm{O} \cdots \mathrm{O} 2.809$ (2) and 2.875 (2) \AA, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 167.7(8)$ and $167.5(8)^{\circ}$] between adjacent $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$chains are formed with water molecules. Consequently a two-dimensional network of H bonds is constructed.

Introduction. In the crystal structures of alkali and ammonium dihydrogen orthophosphates, the type of hydrogen bonding between adjacent $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$groups differs with varying ionic radii of cations: i.e. a three-dimensionally connected framework of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ groups for Rb or smaller cations (Haussühl, 1964;

Tenzer, Frazer \& Pepinsky, 1958; Bacon \& Pease, 1953; Choudhary, Nelmes \& Rouse, 1981; Catti \& Ivaldi, 1977), and a two-dimensional network for Cs or Tl ions (Nelmes \& Choudhary, 1978, 1981).

We report here the crystal structure of tetramethylammonium dihydrogenorthophosphate monohydrate (hereafter abbreviated as TMADP. $\mathrm{H}_{2} \mathrm{O}$), which contains bulky univalent tetramethylammonium ions.

Experimental. Preparation of the crystal: A solution of orthophosphoric acid was added to a solution of tetramethylammonium hydroxide and pH adjusted to $4 \cdot 5$. The mixed solution was concentrated to grow polycrystals of TMADP. $\mathrm{H}_{2} \mathrm{O}$. Single crystals were grown in a refrigerator by slow evaporation of aqueous solutions of the polycrystals. D_{m} measured by flotation in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O} / \mathrm{CHCl}_{3}$. Colourless ellipsoidal crystal $0.43 \times 0.60 \times 0.61 \mathrm{~mm}$. X-ray measurements made with Enraf-Nonius CAD-4 diffractometer with graphite-monochromatized Mo $K \alpha$ radiation. Lattice parameters and orientation matrix by least-squares © 1987 International Union of Crystallography
refinement for 23 reflections, $9.68<\theta<12.50^{\circ}$. Total of 3051 reflections measured with $\omega-2 \theta$ scanning for θ 2 to 30°, up to $(\sin \theta / \lambda)_{\text {max }}=0.7024 \AA^{-1}(-11 \leq$ $h \leq 11, \quad 0 \leq k \leq 18, \quad 0 \leq l \leq 11)$; correction for Lorentz-polarization and no absorption correction; intensities of three standard reflections ($322,440,015$) monitored 37 times during data collection, intensity variation not significant; 2940 unique reflections ($R_{\text {int }}$ $=0.012$ with 766 reflections $[I<3 \sigma(I)$] considered unobserved; systematic absences $0 k 0, k=$ odd and $h 0 l$, $l=$ odd uniquely consistent with $P 2_{1} / c$. Positions of PO_{4} groups and N and C atoms obtained from Patterson synthesis and Fourier synthesis; H atoms from difference Fourier synthesis refined isotropically; final full-matrix least-squares refinement on F included positional parameters for all atoms, anisotropic thermal parameters for all non- H atoms and isotropic ones for all H atoms; fixed isotropic thermal parameters ($B_{\text {iso }}=4.0 \AA^{2}$) for H atoms in tetramethylammonium group; final refinement with 2023 reflections corresponding to $F_{o}>3 \sigma_{F}$; final $R=0.037$, wR $=0.037\{w$ $\left.=4 F_{\nu}^{2} /\left[\sigma\left(F_{o}\right)^{2}\right]^{2}\right\}, \quad S=5 \cdot 34 ; \quad(4 / \sigma)_{\text {max }}$ in final leastsquares cycle 0.03 ; final difference Fourier height maximum 0.237 and minimum $0.077 \mathrm{e}^{\AA^{-3}}$; refined secondary-extinction value $g=5.2 \times 10^{-6}$.* Atomic

$$
{ }^{*}\left|F_{c}\right|=\left|F_{o}\right|\left(1+g I_{c}\right) \text { (Stout \& Jensen, } 1968 \text {). }
$$

Table 1. Final atomic coordinates and equivalent isotropic or isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}$ or $B_{\text {iso }}$ *
P	$0 \cdot 16769$ (5)	$0 \cdot 27867$ (3)	$0 \cdot 55145$ (5)	2.579 (7)
O(1)	$0 \cdot 2460$ (2)	0.3440 (1)	$0 \cdot 6883$ (1)	$3 \cdot 39$ (2)
O(2)	$0 \cdot 0740$ (2)	0.3356 (1)	0.4134 (1)	3.74 (3)
O(3)	0.2987 (2)	0.2122 (1)	0.4886 (2)	4.69 (3)
O(4)	0.0525 (2)	0.2001 (1)	0.6145 (2)	4.83 (3)
O(5)	0.2228 (2)	0.5649 (1)	$0 \cdot 6453$ (2)	4.41 (3)
N	$0 \cdot 2898$ (2)	$0 \cdot 5815$ (1)	$0 \cdot 2056$ (2)	$2 \cdot 88$ (3)
C(1)	$0 \cdot 1196$ (2)	0.5608 (2)	$0 \cdot 2148$ (2)	3.94 (4)
C(2)	0.3874 (3)	0.4954 (2)	$0 \cdot 2858$ (3)	$4 \cdot 82$ (5)
C(3)	0.3120 (3)	0.5867 (2)	0.0349 (3)	5.41 (5)
C(4)	0.3373 (3)	0.6799 (2)	0.2890 (4)	6.47 (6)
H(1)	0.281 (3)	$0 \cdot 199$ (2)	0.399 (3)	5.4 (5)
H(2)	0.069 (3)	$0 \cdot 190$ (2)	0.709 (3)	$5 \cdot 7$ (6)
H(3)	0.133 (2)	0.585 (2)	0.623 (2)	$4 \cdot 3$ (5)
H(4)	0.215 (3)	0.512 (2)	0.658 (3)	$6 \cdot 0$ (6)
H(5)	$0 \cdot 110$ (2)	$0 \cdot 556$ (2)	0.327 (2)	$4 \cdot 0$
H(6)	0.061 (2)	0.611 (2)	$0 \cdot 164$ (2)	4.0
H(7)	0.096 (2)	0.499 (2)	0.157 (2)	4.0
H(8)	0.490 (2)	0.509 (2)	0.281 (2)	4.0
H(9)	0.370 (2)	0.492 (2)	0.393 (2)	4.0
H(10)	0.363 (2)	0.435 (2)	0.220 (2)	4.0
H(11)	0.418 (2)	0.606 (2)	0.040 (2)	4.0
$\mathrm{H}(12)$	0.240 (2)	0.636 (2)	-0.020 (2)	4.0
H(13)	0.285 (2)	0.521 (2)	-0.008 (2)	4.0
H(14)	0.449 (2)	0.686 (2)	0.290 (2)	4.0
H(15)	0.274 (2)	0.732 (2)	0.223 (2)	$4 \cdot 0$
H(16)	0.315 (2)	0.672 (2)	0.406 (2)	4.0
${ }^{*} B_{\mathrm{cq}}=\frac{4}{3}\left(\beta_{11} a^{2}+\beta_{22} b^{2}+\beta_{33} c^{2}+\beta_{12} a b \cos \gamma+\beta_{13} a c \cos \beta+\right.$ $\left.\beta_{23} b c \cos \alpha\right)$. $B_{\text {iso }}$'s are fixed for H atoms in a tetramethylammonium group ($B_{\text {iso }}=4.0 \AA^{2}$).				

scattering factors and $f^{\prime}, f^{\prime \prime}$ values from International Tables for X-ray Crystallography (1974). Computer programs: Enraf-Nonius SDP-Plus program package (Enraf-Nonius, 1985) and ORTEPII (Johnson, 1976) for all calculations.

Discussion. The final atomic coordinates, $B_{\text {eq }}$ values for non-hydrogen atoms and $B_{\text {iso }}$ for H atoms are listed in Table 1, and bond lengths and angles in Table 2. Bond lengths and angles in the hydrogen-bond scheme are given in Table 3.*

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{P}-\mathrm{O}(1)$	1.499 (1)	$\mathrm{C}(1)-\mathrm{H}(5)$	0.963 (9)
$\mathrm{P}-\mathrm{O}(2)$	1.497 (1)	$\mathrm{C}(1)-\mathrm{H}(6)$	0.891 (10)
$\mathrm{P}-\mathrm{O}(3)$	1.565 (1)	$\mathrm{C}(1)-\mathrm{H}(7)$	0.938 (10)
$\mathrm{P}-\mathrm{O}(4)$	1.561 (1)	$\mathrm{C}(2)-\mathrm{H}(8)$	0.899 (11)
$\mathrm{O}(3)-\mathrm{H}(1)$	0.770 (11)	$\mathrm{C}(2)-\mathrm{H}(9)$	0.939 (9)
$\mathrm{O}(4)-\mathrm{H}(2)$	0.795 (11)	$\mathrm{C}(2)-\mathrm{H}(10)$	0.961 (10)
$\mathrm{O}(5)-\mathrm{H}(3)$	0.800 (12)	$\mathrm{C}(3)-\mathrm{H}(11)$	0.932 (9)
$\mathrm{O}(5)-\mathrm{H}(4)$	0.701 (13)	$\mathrm{C}(3)-\mathrm{H}(12)$	0.956 (10)
N --C(1)	1.488 (1)	$\mathrm{C}(3)-\mathrm{H}(13)$	0.933 (9)
$\mathrm{N}-\mathrm{C}(2)$	1.485 (1)	$\mathrm{C}(4)-\mathrm{H}(14)$	0.957 (10)
$\mathrm{N}-\mathrm{C}(3)$	1.484 (1)	$\mathrm{C}(4)-\mathrm{H}(15)$	0.977 (9)
$\mathrm{N}-\mathrm{C}(4)$	1.476 (1)	$\mathrm{C}(4)-\mathrm{H}(16)$	1.039 (9)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	116.25 (3)	$\mathrm{H}(6)-\mathrm{C}(1)-\mathrm{H}(7)$	108.1 (8)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	108.33 (4)	$\mathrm{N}-\mathrm{C}(2)-\mathrm{H}(8)$	108.4 (6)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	109.23 (3)	$\mathrm{N}-\mathrm{C}(2)-\mathrm{H}(9)$	108.5 (6)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	109.03 (3)	$\mathrm{N}-\mathrm{C}(2)-\mathrm{H}(10)$	106.6 (6)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	$107 \cdot 29$ (4)	$\mathrm{H}(8)-\mathrm{C}(2)-\mathrm{H}(9)$	110.7 (8)
$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	106.26 (4)	$\mathrm{H}(8)-\mathrm{C}(2)-\mathrm{H}(10)$	104.3 (8)
$\mathrm{P}-\mathrm{O}(3)-\mathrm{H}(1)$	114.9 (8)	$\mathrm{H}(9)-\mathrm{C}(2)-\mathrm{H}(10)$	117.8 (8)
$\mathrm{P}-\mathrm{O}(4)-\mathrm{H}(2)$	$115 \cdot 1$ (8)	$\mathrm{N}-\mathrm{C}(3)-\mathrm{H}(11)$	104.0 (6)
$\mathrm{H}(3)-\mathrm{O}(5)-\mathrm{H}(4)$	104. (1)	$\mathrm{N}-\mathrm{C}(3)-\mathrm{H}(12)$	109.5 (6)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	108.77 (7)	$\mathrm{N}-\mathrm{C}(3)-\mathrm{H}(13)$	105.8 (6)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(3)$	109.41 (8)	$\mathrm{H}(11)-\mathrm{C}(3)-\mathrm{H}(12)$	112.9 (8)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)$	109.01 (8)	$\mathrm{H}(11)-\mathrm{C}(3)-\mathrm{H}(13)$	115.6 (9)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	109.18 (8)	$\mathrm{H}(12)-\mathrm{C}(3)-\mathrm{H}(13)$	108.6 (8)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(4)$	109.53 (9)	$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(14)$	105.5 (6)
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(4)$	110.9 (1)	$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(15)$	103.5 (6)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(5)$	107.2 (5)	$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(16)$	106.9 (5)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(6)$	108.7 (6)	$\mathrm{H}(14)-\mathrm{C}(4)-\mathrm{H}(15)$	114.4 (8)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(7)$	104.8 (6)	$\mathrm{H}(14)-\mathrm{C}(4)-\mathrm{H}(16)$	109.5 (8)
$\mathrm{H}(5)-\mathrm{C}(1)-\mathrm{H}(6)$	113.0 (8)	$\mathrm{H}(15)-\mathrm{C}(4)-\mathrm{H}(16)$	116.0 (8)
$\mathrm{H}(5)-\mathrm{C}(1)-\mathrm{H}(7)$	114.5 (8)		

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the
hydrogen-bond scheme

	$\mathrm{O}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(3)-\mathrm{H}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$0.770(11)$	$1.838(11)$	$2.606(2)$	$175.6(8)$
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right) \cdots \mathrm{O}(2)$	$0.795(11)$	$1.754(11)$	$2.543(2)$	$171.1(8)$
$\mathrm{O}(5) \cdots \mathrm{H}) \cdots \mathrm{O}(1)$	$0.701(13)$	$2.186(13)$	$2.875(2)$	$167.5(8)$
$\mathrm{O}\left(5^{i i}\right)-\mathrm{H}\left(3^{(1)} \cdots \mathrm{O}(2)\right.$	$0.800(13)$	$2.022(13)$	$2.809(2)$	$167.7(8)$

Equivalent positions: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $-x, 1-y, 1-z$.

Fig. 1. Crystal structure of TMADP. $\mathrm{H}_{2} \mathrm{O}$. Hydrogen bonds are drawn as broken lines (Johnson, 1976).

The structure shown in Fig. 1 can be described as follows: $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$chains along the c axis are formed with PO_{4} tetrahedra connected to each other by two H bonds $\left[\mathrm{O}(3)-\mathrm{H}(1) \cdots \mathrm{O}\left(1^{\mathrm{i}}\right)\right.$ and $\left.\mathrm{O}\left(4^{1}\right)-\mathrm{H}\left(2^{\mathrm{i}}\right) \cdots \mathrm{O}(2)\right]$; two other H bonds $\left[\mathrm{O}(5)-\mathrm{H}(4) \cdots \mathrm{O}(1)\right.$ and $\mathrm{O}\left(5^{\mathrm{ii}}\right)-$ $\mathrm{H}\left(3^{\mathrm{ii})} \cdots \mathrm{O}(2)\right]$ between adjacent $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$chains are also formed with water molecules. Consequently a twodimensional network of H bonds is constructed; there are no H bonds between the networks. Bulky $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$ ions exist in the hollow space of the network. As shown in Table 3, the H bonds along the chain are strong and the interchain H bonds weak according to the criterion of $\mathrm{O}-\mathrm{O}$ distances less than or greater than $2.7 \AA$ (Brown, 1976).

Following Baur (1974), the distortion indices (DI's) related to a PO_{4} tetrahedron have been calculated for
$\mathrm{P}-\mathrm{O}$ distances, $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles and $\mathrm{O}-\mathrm{O}$ distances: $\mathrm{DI}(\mathrm{TO})=0.021 \quad(0.017), \mathrm{DI}(\mathrm{OTO})=0.021 \quad(0.025)$ and $\mathrm{DI}(\mathrm{OO})=0.007(0.011)$; the average values given by Baur (1974) for several acidic orthophosphates are shown in parentheses. All the DI's are zero for a regular PO_{4} tetrahedron.

The arrangement of C atoms around N in the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}^{+}$ion is almost ideally tetrahedral. The $\mathrm{N}-\mathrm{C}$ lengths range from 1.476 (1) to 1.488 (1) \AA, and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles from 108.77 (7) to $110.9(1)^{\circ}$ with average values of 1.483 (1) \AA and 109.47 (8) ${ }^{\circ}$ respectively (Table 2).

The experiment and analysis were carried out at the Center of Advanced Instrumental Analysis, Kyushu University.

References

Bacon, G. E. \& Pease, R. S. (1953). Proc. R. Soc. London Ser. A, 220, 397-421.
BaUR, W. H. (1974). Acta Cryst. B30, 1195-1215.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Catti, M. \& Ivaldi, G. (1977). Z. Kristallogr. 146, 215-226.
Choudhary, R. N. P., Nelmes, R. J. \& Rouse, K. D. (1981). Chem. Phys. Lett. 78, 102-105.
Enraf-Nonius (1985). Structure Determination Package-Plus. Enraf-Nonius, Delft, Holland.
Haussühl, S. (1964). Z. Kristallogr. 120, 401-4 14.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report OR NL-5138. Oak Ridge National Laboratory, Tennessee.
Nelmes, R. J. \& Choudhary, R. N. P. (1978). Solid State Commun. 26, 823-826.
Nelmes, R. J. \& Choudahry, R. N. P. (1981). Solid State Commun. 38, 321-324.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: Macmillan.
Tenzer, L., Frazer, B. C. \& Pepinsky, R. (1958). Acta Cryst. 11, 505-509.

Dimethyl 3,3-Dimethyl-2,4,7-trioxa-cis-bicyclo[3.3.0]octane-exo-6,exo-8-dicarboxylate

By Philip G. Hultin, J. Bryan Jones and Jeffery F. Sawyer
Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 1A1

(Received 21 October 1986; accepted 16 December 1986)

$\mu(\mathrm{Mo} K \bar{\alpha})=1 \cdot 1 \mathrm{~cm}^{-1}, \quad F(000)=552, \quad T=298 \mathrm{~K}, \quad R$ $=0.051$ for 974 reflections with $I \geq 3 \sigma(I)$. X-ray analysis indicates that the two methoxycarbonyl groups at $C(6)$ and $C(8)$ are exo to the cis ring junction and © 1987 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic temperature factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43639 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbcy Square, Chester CH1 2HU, England.

